Generating Images from Captions with Attention
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INTRODUCTION MODEL DESCRIPTION

Why to condition on captions ?

e Captions could be used to simplity
image modelling task.

e Generating images conditioned on

novel captions helps better under-
stand its generalization.
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Key Ideas

e Treat the problem as part of sequence-
to-sequence framework [2,9].
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Inference (Q)

e Captiony is
represented as
sequence of words
(yla Y2, --ey yN)/
where N is the
length of the
sequence.

%
e Bidirectional LSTM [6] computes a sequence of forward & "¢, and backward h T lang 3 hidden states respectively,
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which are concatenated together into the sentence representatlon plang — [p'e"9 p o]

e The image model [5] iteratively computes the following set of equations over time ¢ =1, ..., T
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Image x is Xe =x—o(e-1),

represented as a
sequence of p X p

re = read (X, Xe, hiT),

tches d P = LSTM™ T (0 [y, ),
patcnes drawn on a

w X h canvas c; over o Q(Zi|x,y, Z1:4—1) =N (M(hinfer)a U(h;nfer 5
timet =1,....7. | 5 x ~ P(x|y, Z1.r)
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® align operator [1] outputs a dynamic sentence representation s; at each timestep by computing a weighted sum of hidden states

of words using alignment probabilities o}

REFERENCES

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. In ICLR, 2015.

K. Cho, B. van Merrienboer, C. Giilgehre, D. Bahdanau, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase representations using RNN

S; = alzgn(hgi’fi’ hlang) thlang 4 thlang Lo+ Nhlang

ok oc exp (v tanh(UR™ + WhI" + b))

The proposed model consists of four main parts: language model, image model, alignment model and post-processing model.

GENERATED IMAGES

A stop sign is flying
in blue skies.
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A very large commer-
cial plane {flying in
blue skies.
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The chocolate desert
is on the table.
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A yellow school bus
is flying in blue skies.

A very large commer-
cial plane flying in
rainy skies.

A bowl of bananas is
on the table.

EXAMPLES OF ALIGNMENT

T+ B
[

A rider on a blue mo-
torcycle in the desert.
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A rider on a blue mo-
torcycle in the forest.
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A toilet seat sits open
in the grass field.

A herd of elephants
walking across a dry
grass field.
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Green bus parked in
a parking lot.
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A surfer, woman and
child walk on beach.

MICROSOFT COCO [8] RESULTS
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A person skiing on
sand clad vast desert.
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A herd of elephants
walking across a
green grass field.
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Red bus parked in a
parking lot.
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A surfer, woman and
child walk on sun.

Microsoft COCO (before post-processing)
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e Images are generated by discarding the inference network and by sampling latent variables Z;.; from prior distribution.
e Finally, images are sharpened using a deterministic adversarial network [3,4] trained on residuals of a Laplacian pyramid.

LEARNING

The model is trained to optlmlze the Varlatlonal lower bound £ of image x given caption y using the SGVB [7] algorithm.
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Conv-Deconv VAE 1.0 6.5
skipthoughtDRAW 2.0 11.2
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Top: Image retrieval and similarity results of different models. R@K is Recall@K
(higher is better). Med r is the median rank (lower is better). SSI is Structural Simi-
larity Index, which is between —1 and 1 (higher is better).




